TRANSFORMATION OF PROSTAGLANDIN A₂ INTO PROSTAGLANDIN C₂

E. J. Corey and Clifford R. Cyr

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA

(Received in USA 28 February 1974; received in UK for publication 3 April 1974)

Prostaglandins of the C series have recently been identified as intermediates in the deactivating ..
1 **conversion of A prostaglandins to B prostaglandins in mammalian blood. ' In addition, the C prosta**glandins have been found to possess high biological activity. We have recently described² a stereocontrolled total synthesis of prostaglandin (PG) C_2 using the bicyclo[2.2.1] heptane approach³ via

intermediates which also lead to PGA₂.^{4, 5} Another method for the synthesis of PGC₂(II), directly from PGA₂ (I), is described herein.

The method envisioned for conversion of PGA₂ to PGC₂ involves generation of a Y -extended enolate ion (III) by proton abstraction from C-12 followed by α -protonation (at C-10) under conditions which do not destroy the highly sensitive PGC₂ so formed. Such a deconjugation process finds precedent in earlier work, for example, the Δ^4 -3-keto steroid $\rightarrow \Delta^5$ -3-keto steroid transformation. ⁶ In practice **it was found that the choice of basic reagent was unexpectedly critical. In all experiments the enolate forming process was conducted for no more than a minute, the enolate was quenched at low temperatures with acetic acid-methanol and the product was recovered by rapid extraction at 0" from pH 4 buffer.** PGC₂ is stable under the conditions used for isolation.

Best results were obtained with t-butoxide or t-amyloxide ion as base. The procedure using the former reagent is as follows: A solution of 0.65 ml of 1 M potassium t -butoxide in t -butyl alcohol was added to 2 ml of dry tetrahydrofuran (THF) at -23° (dry ice - CCl₄ bath) under argon. A precooled (-23°) solution of 40 mg (0.12 mmole) of PGA₂ in 2 ml of THF was then added at once with rapid **stirring. After 1 min 1.0 ml of a cold (-23") solution (1.75 MJ of acetic acid in methanol was added** at once and the resulting mixture was stirred rapidly at -23° for 15 sec and then poured into a cold (0°) **mixture of pH 4 phosphate buffer (5%) and ether. After separation of phases and rapid extraction of the aqueous part with three 40-ml portions of ether, the ethereal extracts were washed with saturated** \mathbf{s} odium chloride \mathbf{s} olution, dried (CaSO₄), and concentrated <u>in vacuo</u> to give crude PGC₂ (II) (36 mg) **as a pale yellow oil. Analysis of the reaction mixture by thin layer chromatography and ultraviolet** absorption indicated contamination of the PGC₂ by variable amounts of PGA₂ and PGB₂. Pure PGC₂ **was isolated (30% yield) by preparative thin layer chromatography on silica gel using benzene-THF**acetic acid (70:25:1); \underline{R} values were: PGC₂ 0.64; PGA₂ and PGB₂ 0.55. Unambiguous identification of PGC₂ was made by (1) ultraviolet absorption¹ (λ max in CH₃OH 234 nm, $\epsilon = 17,000$), (2) infrared absorption¹ (carbonyl stretch at 1750 cm⁻¹ due to cyclopentanone and 1715 cm⁻¹ due to carboxyl, in CHCl₃), (3) nmr spectrum, (4) mass spectrum¹ of the methyl ester and (5) rapid and quantitative conversion to PGB₂ by a trace of base in methanol at 25°.

The use of the following strong bases in excess under conditions slmllar to those of the abovedescribed experiment led only to the recovery of PGA₂: t-butyllithium, lithium bistrimethylsilylamide, **sodium blstrlmethylsilylamlde, lithium N-isopropyl-N-cyclohexylamide. lithium diisopropylamide and** lithium tetramethylpiperidide. These bases evidently deprotonate I selectively at C-8 rather than **at** $C-12$.⁷ Trityllithium reacted mainly to form the 1,4-addition product (c f. ref 7). Lithium methylsulfinylcarbanide in dimethylsulfoxide⁸ afforded PGC₂ (ca. 25%), PGB₂ (ca. 30%) and a third **unidentified product (ca. 45%).**

Using the procedure given above, $PGC₂$ can now be prepared conveniently from the more stable (and more readily available) $PGA₂$. ⁹

References

- 1. (a) R. L. Jones, J. Lipid Res., 13, 511 (1972); (b) R. L. Jones and S. Cammock, Advan. Biol. $Sci.$, 9 , 61 (1973).
- 2. E. J. Corey and G. Moinet, J. Amer. Chem. Soc., 95, 7185 (1973).
- 3. See, J. S. Bindra, A. Grodski, T. K. Schaaf and E. J. Corey, $\underline{\text{ibid.}}$, $\underline{\text{95}}$, 7522 (1973) and references cited therein.
- 4. E. J. Corey and G. Moinet, ibid., 95, 6831 (1973).
- 5. For a synthesis of 8-methylprostaglandin C_2 see, E. J. Corey and H. S. Sachdev, ibid., 95, 8484 (1973).
- 6. See, E. Shapiro, L. Weber, E. P. Oliveto, H. L. Herzog, R. Neri, S. Tolksdorf and M. Tanabe, Steroids, 8, 461 (1966).
- 7. See, R. A. Lee and W. Reusch, Tetrahedron Lett., 969 (1973), for an interesting study of enolate vs y-extended enolate formation with various bases.
- 8. E. J. Corey and M. Chaykovsky, <u>J. Amer. Chem. Soc., 87</u>, 1345 (1965).
- 9. This work was supported by the U.S. Agency for International Development and the National Institutes of Health.